Isoliquiritigenin selectively inhibits H(2) histamine receptor signaling.

نویسندگان

  • Dong-Chan Kim
  • Se-Young Choi
  • Sun-Hee Kim
  • Bong-Sik Yun
  • Ick-Dong Yoo
  • Nanga Ravi Prakash Reddy
  • Ho Sup Yoon
  • Kyong-Tai Kim
چکیده

Isoliquiritigenin, one of the major constituents of Glycyrrhiza uralensis (licorice), is a natural pigment with a simple chalcone structure 4,2',4'-trihydroxychalcone. In this study, isoliquiritigenin showed selective H(2) histamine receptor (H(2)R) antagonistic effect and remarkably reduced several H(2)R-mediated physiological responses. Preincubation of U937 and HL60 hematopoietic cells with isoliquiritigenin significantly inhibited H(2)R agonist-induced cAMP response in a concentration-dependent manner without affecting the viability of cells. Isoliquiritigenin also blocked the binding affinity of [(3)H]tiotidine to membrane receptors in HL-60 cells. Isoliquiritigenin did not affect the elevation of cAMP levels induced by cholera toxin, forskolin, or isoproterenol, indicating that the action site of isoliquiritigenin is not G(s) protein, effector enzyme, adenylyl cyclase, or beta(2)-adrenoceptor. Isoliquiritigenin affected neither H(1)R-nor H(3)R-mediated signaling. In molecular docking studies, isoliquiritigenin exhibited more favorable interactions with H(2)R than histamine. Isoliquiritigenin prominently inhibited H(2)R selective agonist dimaprit-induced cAMP generation in MKN-45 gastric cancer cell. Moreover, isoliquiritigenin reduced gastric acid secretion and protected gastric mucosal lesion formation in pylorus-ligated rat model. Taken together, the results demonstrate that isoliquiritigenin is an effective H(2)R antagonist and provides the basis for designing novel H(2)R antagonist.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ligand-directed functional heterogeneity of histamine H1 receptors: novel dual-function ligands selectively activate and block H1-mediated phospholipase C and adenylyl cyclase signaling.

The autacoid and neurotransmitter histamine activates the H(1) G protein-coupled receptor (GPCR) to stimulate predominantly phospholipase C (PLC)/inositol phosphate (IP) signaling and, to a lesser extent, adenylyl cyclase (AC)/cAMP signaling in a variety of mammalian cells and tissues, as well as H(1)-transfected clonal cell lines. This study reports that two novel H(1) receptor ligands develop...

متن کامل

The selective eosinophil chemotactic activity of histamine

Histamine diphosphate was shown to selectively attract human eosinophils from mixed granulocyte populations when over 20% eosinophils were used in a modified Boyden chamber chemotactic assay system. This effect of histamine is abolished by incubation with diamine oxidase (histaminase) and was generated by decarboxylation of L-histidine. A linear dose dependent increase in eosinophil migration w...

متن کامل

Prostaglandin E2 Inhibits Histamine-Evoked Ca2+ Release in Human Aortic Smooth Muscle Cells through Hyperactive cAMP Signaling Junctions and Protein Kinase A

In human aortic smooth muscle cells, prostaglandin E2 (PGE2) stimulates adenylyl cyclase (AC) and attenuates the increase in intracellular free Ca2+ concentration evoked by activation of histamine H1 receptors. The mechanisms are not resolved. We show that cAMP mediates inhibition of histamine-evoked Ca2+ signals by PGE2 Exchange proteins activated by cAMP were not required, but the effects wer...

متن کامل

Dexmedetomidine Modulates Histamine-induced Ca2+ Signaling and Pro-inflammatory Cytokine Expression

Dexmedetomidine is a sedative and analgesic agent that exerts its effects by selectively agonizing α2 adrenoceptor. Histamine is a pathophysiological amine that activates G protein-coupled receptors, to induce Ca(2+) release and subsequent mediate or progress inflammation. Dexmedetomidine has been reported to exert inhibitory effect on inflammation both in vitro and in vivo studies. However, it...

متن کامل

INCREASED HISTAMINE Hi RECEPTOR BLOCKADE BY CHLORPHENIRAMINE IN TRACHEAL CHAINS OF ASTHMATIC GUINEA PIGS

Receptor affinity and drug delivery to the receptor sites could be determinant factors for the increased bronchial responsiveness seen in asthma. Competitive antagonism blockade which is measured as dose ratio-l (DR-I) depends only on these two factors. Therefore, in this study we have examined histamine HI blockade by chlorpheniramine on isolated tracheal chains of asthmatic compared to co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 70 2  شماره 

صفحات  -

تاریخ انتشار 2006